skip to main content


Search for: All records

Creators/Authors contains: "Wang, Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 12, 2025
  2. Electronic devicesforrecording neuralactivityinthe nervoussyste m needto bescalableacrosslargespatialandte mporalscales whilealso providing millisecondandsingle-cellspatiote mporalresolution. H o w e v e r, e xi s ti n g hi g h- r e s ol u ti o n n e u r al r e c o r di n g d e vi c e s c a n n o t achievesi multaneousscalability on bothspatialandte mporallevels due toatrade-offbetweensensordensityand mechanicalflexibility. Here weintroduceathree-di mensional(3D)stackingi mplantableelectronic platfor m,basedonperfluorinateddielectricelasto mersandtissue-levelsoft multilayerelectrodes,thatenablesspatiote mporallyscalablesingle-cell neuralelectrophysiologyinthenervoussyste m. Ourelasto mersexhibit stable dielectric perfor mancefor overayearin physiologicalsolutions andare10,000ti messofterthanconventional plastic dielectrics. By leveragingthese uniquecharacteristics we developthe packaging of lithographednano metre-thickelectrodearraysina3Dconfiguration with across-sectionaldensityof7.6electrodesper100μ m2.Theresulting3D integrated multilayersoftelectrodearrayretainstissue-levelflexibility, reducingchronici m muneresponsesin mouse neuraltissues,and de monstratestheabilitytoreliablytrackelectricalactivityinthe mouse brain orspinalcord over months without disruptingani mal behaviour. 
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  3. ABSTRACT

    We present the analysis of cloud–cloud collision (CCC) process in the Galactic molecular complex S235. Our new CO observations performed with the PMO-13.7 m telescope reveal two molecular clouds, namely the S235-Main and the S235-ABC, with ∼4 km s−1 velocity separation. The bridge feature, the possible colliding interface and the complementary distribution of the two clouds are significant observational signatures of cloud–cloud collision in S235. The most direct evidence of cloud–cloud collision process in S235 is that the S235-Main (in a distance of 1547$^{+44}_{-43}$ pc) and S235-ABC (1567$^{+33}_{-39}$ pc) meet at almost the same position (within 1σ error range) at a supersonic relative speed. We identified ten 13CO clumps from PMO-13.7 m observations, 22 dust cores from the archival SCUBA-2 data, and 550 YSOs from NIR–MIR data. 63 per cent of total YSOs are clustering in seven MST groups (M1−M7). The tight association between the YSO groups (M1 $\&$ M7) and the bridge feature suggests that the CCC process triggers star formation there. The collisional impact subregion (the South) shows 3 ∼ 5 times higher CFE and SFE (average value of 12.3 and 10.6 per cent, respectively) than the non-collisional impact subregion (2.4 and 2.6 per cent, respectively), suggesting that the CCC process may have enhanced the CFE and SFE of the clouds compared to those without collision influence.

     
    more » « less
  4. Free, publicly-accessible full text available September 12, 2024
  5. Abstract

    Lithium-based nonaqueous redox flow batteries (LRFBs) are alternative systems to conventional aqueous redox flow batteries because of their higher operating voltage and theoretical energy density. However, the use of ion-selective membranes limits the large-scale applicability of LRFBs. Here, we report high-voltage membrane-free LRFBs based on an all-organic biphasic system that uses Li metal anode and 2,4,6-tri-(1-cyclohexyloxy-4-imino-2,2,6,6-tetramethylpiperidine)-1,3,5-triazine (Tri-TEMPO), N-propyl phenothiazine (C3-PTZ), and tris(dialkylamino)cyclopropenium (CP) cathodes. Under static conditions, the Li||Tri-TEMPO, Li||C3-PTZ, and Li||CP batteries with 0.5 M redox-active material deliver capacity retentions of 98%, 98%, and 92%, respectively, for 100 cycles over ~55 days at the current density of 1 mA/cm2and a temperature of 27 °C. Moreover, the Li||Tri-TEMPO (0.5 M) flow battery delivers an initial average cell discharge voltage of 3.45 V and an energy density of ~33 Wh/L. This flow battery also demonstrates 81% of capacity for 100 cycles over ~45 days with average Coulombic efficiency of 96% and energy efficiency of 82% at the current density of 1.5 mA/cm2and at a temperature of 27 °C.

     
    more » « less
  6. Individuals and organizations are using databases to store personal information at an unprecedented rate. This creates a quandary for data providers. They are responsible for protecting the privacy of individuals described in their database. On the other hand, data providers are sometimes required to provide statistics about their data instead of sharing it wholesale with strong assurances that these answers are correct and complete such as in regulatory filings for the US SEC and other goverment organizations.

    We introduce a system,ZKSQL, that provides authenticated answers to ad-hoc SQL queries with zero-knowledge proofs. Its proofs show that the answers are correct and sound with respect to the database's contents and they do not divulge any information about its input records. This system constructs proofs over the steps in a query's evaluation and it accelerates this process with authenticated set operations. We validate the efficiency of this approach over a suite of TPC-H queries and our results show that ZKSQL achieves two orders of magnitude speedup over the baseline.

     
    more » « less
  7. Unit testing focuses on verifying the functions of individual units of a software system. It is challenging due to the high inter dependencies among software units. Developers address this by mocking—replacing the dependency by a “fake” object. Despite the existence of powerful, dedicated mocking frameworks, developers often turn to a “hand-rolled” approach—inheritance. That is, they create a subclass of the dependent class and mock its behavior through method overriding. However, this requires tedious implementation and compromises the design quality of unit tests. This work contributes a fully automated refactoring framework to identify and replace the usage of inheritance by using Mockito—a well received mocking framework. Our approach is built upon the empirical experience from five open source projects that use inheritance for mocking. We evaluate our approach on nine other projects. Results show that our framework is efficient, generally applicable to new datasets, mostly preserves test case behaviors in detecting defects (in the form of mutants), and decouples test code from production code. The qualitative evaluation by experienced developers suggests that the auto-refactoring solutions generated by our framework improve the quality of the unit test cases in various aspects, such as making test conditions more explicit, as well as improved cohesion, readability, understandability, and maintainability with test cases. Finally, we submit 23 pull requests containing our refactoring solutions to the open-source projects. It turns out that, 9 requests are accepted/merged, 6 requests are rejected, the remaining requests are pending (5 requests), with unexpected exceptions (2 requests), or undecided (1 request). In particular, among the 21 open source developers that are involved in the reviewing process, 81% give positive votes. This indicates that our refactoring solutions are quite well received by the open-source projects and developers. 
    more » « less
  8. NiCo2O4 (NCO) films grown on MgAl2O4 (001) substrates have been studied using magnetometry and x-ray magnetic circular dichroism based on x-ray absorption spectroscopy and spin-polarized inverse photoemission spectroscopy with various thicknesses down to 1.6 nm. The magnetic behavior can be understood in terms of a layer of optimal NCO and an interfacial layer (1.2 ± 0.1 nm), with a small canting of magnetization at the surface. The thickness dependence of the optimal layer can be described by the finite-scaling theory with a critical exponent consistent with the high perpendicular magnetic anisotropy. The interfacial layer couples antiferromagnetically to the optimal layer, generating exchange-spring styled magnetic hysteresis in the thinnest films. The non-optimal and measurement-speed-dependent magnetic properties of the interfacial layer suggest substantial interfacial diffusion.

     
    more » « less
    Free, publicly-accessible full text available May 21, 2024